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In this work we consider the Wulff construction at zero temperature for a class
of Gibbs models and study the shape of the obtained droplets. Considering zero
temperature we avoid all difficulties connected with the competition between
energy and entropy. It allows us to study a quite wide class of models which
provides a variety of shapes. The motivations of the study come from attempts
to describe isotropic properties of some models on 2D lattice at zero tempera-
ture. The studied models are binary (the spin space is 0, 1) with a ferromagnetic
behavior such that the potential functions are not equal to zero only for some
tiles with size 3 × 3. In fact, we study herein droplet shapes of a subclass of the
ferromagnetic models with potential functions as mentioned above. This
subclass of models is defined by a condition called regularity. We call the model
classified here as having regular micro-boundaries. Several examples of non-
regular models are also presented.
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1. INTRODUCTION

There exists a quite large scope of texts dealing with droplets of one phase
inside another one (see for example refs. 2–5). The main goal of the men-
tioned works is to prove the existence of a unique big contour separating



the phases at a low positive temperature at the thermodynamical limit. All
these studies concern a small set of models. In the first works (2, 3) and in the
fundamental work (4) the Ising model was studied with this respect. These
results have been extended in further works to the Potts model, the lattice
gas models and several others. (5)

In the present work, we study the shape of the droplets at zero tem-
perature. It permits to avoid all difficulties connected with the competition
between energy and entropy. Therefore, it allows us to consider a wide
class of models that leads to a diversity of droplet shapes.

The original motivation for this study comes from image processing.
In the Gibbs field approach to image processing, the Gibbs field plays the
role of a smoothing tool which is expected to decrease noise in the resulting
image. For example, in the segmentation problem, where the resulting
image is a partition of an original image into regions of different textures,
a model defined by a Gibbs field with ferromagnetic interaction smoothes
the region boundaries. Obviously, this smoothing property must not
depend on the angle of boundary slopes to the co-ordinate systems. That is,
the energy of interaction over boundaries should be isotropic. However it is
improbable to have such an isotropy property on the two dimension lattice
where digitized images are usually presented. On the other hand, it is
reasonable, considering the computation point of view, to use finite range
models, which are surely not isotropic. It is clear that different models can
have different ‘‘degree’’ of isotropy. One of our goals is to describe the iso-
tropy degree of binary models. In order to describe the isotropy we propose
the droplet shape as a measure of the model isotropy. Deviations of the
droplet shapes from the circle measured in one or another way may serve
as an isotropy degree.

In this work we study the droplet shapes for a subclass of binary
ferromagnetic models on Z2 with potential functions of range less than or
equal to 2 `2. We give a classification of the mentioned models with
respect to their droplet shapes. The subclass of ferromagnetic models is
determined by a condition referred to as regularity. The main result
describes a set of polygons representing the droplet shapes in the thermo-
dynamical limit at zero temperature. In particular, the set includes the
square which is well known for the Ising model, and a sixteen-edges
polygon (non-regular) obtained for the model described in ref. 10. For the
regular models, only two parameters, depending on the model potential,
completely determine the corresponding polygon.

We conjecture that the same zoo of polygons gives the droplet shapes
for all ferromagnetic models with range 2 `2. However, we do not study in
this work the total set of these models. It seems that such an investigation
requires a lot of combinatories.
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The polygons discussed here are the droplet shapes at the thermody-
namical limit. We call these shapes the droplet shapes on macro-level or
macro-level shapes. There is a great multiplicity of boundary structures of
prelimiting droplets even at zero temperature. Prelimiting droplet shapes
may not be convex. Moreover, in one of examples (see Example 3 in
Section 4.1) of a non-regular model the droplet boundary is not connected.
The regularity condition allows us to avoid such exotic cases.

In Sections 2 and 3 we formulate and prove our main result concern-
ing the classification of regular models. Section 4 contains several examples
of non-regular models and a discussion about conditions of the regularity.
Parts of the main theorem proof are very technical and postponed to the
Appendix.

2. MODEL DESCRIPTION AND MAIN RESULTS

2.1. 3×3 Models

We study models on Z2 with the spin space X={0, 1}. The only
potential functions which can take non-zero values are

FWt
: XWt

Q R, (1)

where

W0={t=(t1, t2) ¥ Z2 : |ti | [ 1, i=1, 2}, (2)

and Wt=W0+t. A subset Wt is called a plaquette. We consider translation
invariant models. Hence FW0

(x)=FWt
(Ttx), where Ttx(u)=x(t − u), for

any configuration x: Z2
Q X, and any t ¥ Z2.

We consider the Gibbs distribution defined by F in a standard way.
Let G … Z2 be a finite volume and PG be the set of all plaquettes in G. Then
the energy of any configuration x: G Q X is

H(x)= C
W ¥ PG

F(xW). (3)

The Gibbs probability of x in the volume G is

PG, b(x)=
exp{ − bH(x)}

ZG, b

, (4)
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where ZG, b=; y ¥ XG exp{ − bH(y)}. The Gibbs distribution in Z2 is defined
by the thermodynamical limit of the specification (4). Further we use a dif-
ferent form of the thermodynamical limit for a specification with boundary
conditions. The definition will be given later.

Next we give the main assumptions on F. A tile is a table of nine
numbers:

r̄=R r11 r12 r13

r21 r22 r23

r31 r32 r33

S , (5)

where rij ¥ {0, 1}. Let v̄0=R 0 0 0
0 0 0
0 0 0

S and v̄1=R1 1 1
1 1 1
1 1 1

S . We center the values

of F by assuming that:

F(v̄0)=F(v̄1)=0. (6)

Generally there are 29 different tiles and the same number of different
values of F. However, we require F to be invariant with respect to the
natural tile symmetries. Namely, all rotations of r̄ by p

2 and reflections with
respect to horizontal and vertical axes generate a group Ĝ of tile transfor-
mations. Besides we add to Ĝ flips of r̄ taking every rij to 1+rij (mod 2).
Let G be the complete group of the described transformations of r̄.

We assume that the following conditions on the function F are
satisfied:

F1. For any g ¥ G and any r̄

F(r̄)=F(g(r̄)).

This condition reduces the 29 possible different values of F to 51.
The next condition ensures that the models are of ferromagnetic type.

Let k1, k2 ¥ Z+ be such that ki \ 3, i=1, 2. Consider a table ŝ=(sij)1 [ i [ k1,
1 [ j [ k2

,

where sij ¥ {0, 1}. Let Tŝ={r̄} be the set of all tiles r̄ which can be
extracted from ŝ. We assume that:

F2. If ŝ is not constant (0 or 1) then:

C
r̄ ¥ Tŝ

F(r̄) > 0.

It follows from (6) and F2 that every local perturbation of the con-
figuration x0(t) — 0 (or x0(t) — 1), t ¥ Z2, has a finite positive energy.
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Therefore the configurations x0(t) — 0 and x1(t) — 1 are the only periodical
ground states. Of course, there are infinite many nonperiodical ground
states. It is also easy to see that the Peierls conditions are satisfied. (9, 8)

Therefore, there exists a critical temperature separating the case of a unique
Gibbs state and the case of two (at least) Gibbs states.

We use the thermodynamical limit in the following form. Let L=
{l=(l1, l2) ¥ R2 : |li | [ 1, i=1, 2} be the square in R2 and let 1

n Z2 … R2

be the natural embedding of the lattice Z2, scaled by 1
n , into R2. Let

Ln=L 5 1
n Z2. The p-boundary of Ln is “Ln={t ¥ Lc

n : dist(t, Ln) [
2 `2

n } and
L̄n=Ln 2 “Ln. We use the term p-boundary to outline the difference with
the usual definition of boundary. Denote by Xn=XLn the set of all config-
urations on Ln. We use the notation Pn(x) for the Gibbs distribution on Xn

generated by PG, b (see Eq. (4)).
Further we study the canonical ensemble with boundary conditions.

Therefore all configurations are extended out of Ln. We consider the only
boundary condition such that x(t)=1 for t ¨ Ln. The canonical ensemble is
a Gibbs distribution defined on 1

n Z2 as follows. Let D1, D2 be positive con-
stants, c ¥ (0, 1). Consider the set:

X̂c
n=3x ¥ Xn : c −

D1

n
[

|x|
(2n+1)2 [ c+

D2

n
4 ,

where |x| is the number of sites in Ln equal to 0, and Xc
n is the subset of

X
1
n Z

2
such that every configuration of Xc

n is a configuration of X̂c
n extended

by 1’s out of Ln. Then the Gibbs distribution Pc
n( · ) of the canonical

ensemble on Xc
n with the introduced boundary condition is

Pc
n(A)=

;x ¥ A exp{ − bH(x)}
Zc

n

, (7)

where A ı Xc
n, Zc

n=;x ¥ Xc
n

exp{ − bH(x)} and H is the Hamiltonian of the
model corresponding to F.

For any model of the considered class and every n, let Yc
n ı Xc

n be the
set of all configurations having minimal energy. We call every configura-
tion of Yc

n a ground state of the canonical ensemble or simply a ground
state. We use the same term ground state for both the canonical ensemble
and the grand ensemble, however it will not cause confusion. The simple
lemma below shows that any configuration of Yc

n has a droplet composed
of 0’s. In order to avoid problems arising because of boundary effects we
consider the case where c is small enough.
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Next, we introduce several notions. If x ¥ Xn then the set Wx(0)=
{t ¥ L̄n : xWt

— 0} is called the 0-phase of x and the set Wx(1)={t ¥ L̄n :
xWt

— 1} is called the 1-phase of x. The p-contour Wx=L̄n 0(Wx(0) 2
Wx(1)) of x is the subset of sites in L̄n such that xWt

is not constant. We use
the term p-contour because later we shall use the term contour in the usual
sense of bonds with different configuration values on its ends.

Lemma 1. There exists positive constants C1 and C2 such that for
large n and for any x ¥ Yc

n we have:

C1n [ |Wx | [ C2n.

Therefore there exists a constant C0 > 0 such that: |Wx(0)| > C0n2 for
any x ¥ Yc

n.

Proof. It is easy to understand that

lim inf
n Q .

|Wx |
n

> 0.

This gives the left inequality. The upper bound can be proved by consid-
ering the following configuration:

y(t)=˛0, if max{|t1 |, |t2 |} [ m
n ,

1, otherwise,

where c − D1
n [ (2m+1)2

(2n+1)2 [ c+D2
n . Let C0={(t1, t2); 0 [ t1 [ k1, 0 [ t2 [ k2} and

Ct=C0+t. Let also k=|{t: C0+t ` W0}|. It follows from F2 that:

ag=
1
k

min{H(xC0
) : xC0

is not a constant} > 0.

Let ag=maxr̄{F(r̄)}. There exists C̃2 > 0 such that |Wy | ag [ C̃2n. Since
x ¥ Yc

n we have:

|Wx | ag [ H(x) [ H(y) [ |Wy | ag [ C̃2n.

Hence |Wx | [ C2n, with C2=C̃2
a

*
. L

Two sites t1, t2 ¥ 1
n Z2 are p-neighbors if t2 ¥ Wt1

or equivalently if
t1 ¥ Wt2

. A set D ı 1
n Z2 is p-connected if for any pair t1, t2 ¥ D there exists a

way of sites in D being a sequence of p-neighbors linking t1 and t2. The
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0-phase Wx(0) of x is divided into p-connected components. Observe that
the partition Wx(0) into connected components, in conventional geometri-
cal sense, gives the same set of components.

Any p-connected components of Wx(0) is called a micro-droplet.
Let x ¥ Yc

n. It follows from Lemma 1 that x has a micro-droplet with
boundary length of order n. Since x is a ground state of the canonical
ensemble it is the only micro-droplet. This micro-droplet and the potential
function F have the same properties of invariance (see F1).

Next we introduce the notion of macro-droplet following ref. 4. We
map any configuration x ¥ Xn, to a measure mx defined on L in the follow-
ing way:

mx=
1

(2n+1)2 C
t ¥ Ln

x(t) dt, (8)

where dt is the unique atom at t. This map generates distributions on the
set of all measures mx by the Gibbs distribution (4). We use the same
symbol Pn for the generated distribution on the set Mn={mx : x ¥ XLn}. The
map (8) generates also a distribution Pc

n on Mn={mx : x ¥ Xc
n} (see (7)).

Recall that for x ¥ Xc
n the measure mx is formally defined on R2 but its

support is in L.
Let (xn) be a sequence of configurations of Xc

n. The corresponding
sequence of measures (mxn

) is compact in Mc
n since their support is the

compact set L. Let m be a limiting measure of (mxn
). We say that D ı L is a

macro-droplet for m if

1. m(D)=0,

2. |D| > 0,

3. D̊̄=D, where D̄ is closure of D and D̊̄ is interior of D̄.

4. |DŒ|=|D| for any DŒ ` D satisfying 1.

If xn ¥ Yc
n then any limiting measure m has an unique macro-droplet.

Our goal is to find the ground state of the models satisfying the con-
ditions F1 and F2 for the canonical ensemble. We study the shape of the
droplets and give a classification of the models with respect to the macro-
droplet shape. Our proof is not extended to the whole class of models with
F1 and F2. We consider a subset of the whole class of models defined
above referred as regular models. Nevertheless we think that a similar clas-
sification can be given for all models satisfying F1 and F2.
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2.2. Main Result

Consider the following tiles:

ū0=R0 0 0
1 1 1
1 1 1

S ,

ū1
1=R1 1 0

1 1 1
1 1 1

S , ū2
1=R1 0 0

1 1 0
1 1 1

S ,

ū1
2=R1 0 0

1 1 1
1 1 1

S , ū2
2=R0 0 0

1 1 0
1 1 1

S.

Further we use the following notations:

Ũ={ū0, ū1
1, ū1

2, ū2
2}.

U=GŨ.
(9)

The p-contour Wx is regular if it is composed by tiles of U. Let M be
the class of all the models satisfying the conditions F1 and F2.

A model of M is called regular if for any configuration x we have the
following: if t, s ¥ Ln belong to a connected component of Wx then there
exists a configuration y such that one of the connected components of Wy

includes s and t, all tiles of this component belong to U and H(y) [ H(x).
Let Mr be the class of regular models.
We derive a classification of the macro-droplet shapes for the models

of this class. In order to formulate the corresponding theorem we introduce
the following notations:

E0=2F R0 0 0
1 1 1
1 1 1

S ,

E1/2=F R0 1 1
1 1 1
1 1 1

S+F R0 0 0
0 1 1
1 1 1

S+F R0 0 0
0 0 0
0 1 1

S , (10)

E1=2 RF R0 1 1
1 1 1
1 1 1

S+F R0 0 1
0 1 1
1 1 1

SS ,
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and

e1/2=
E1/2

E0
, e1=

E1

E0
. (11)

The meaning of the subscripts will be cleared later.
It follows from F2 that E0 > 0, E1/2 > 0 and E1 > 0. This can be easily

proved by considering configurations y0, y1/2 and y1 on a big rectangular
volume as follows. For large n consider functions g i

0, g i
1/2, g i

1, i=1, 2,
defined on [ − 1, 1]:

dg i
e

dt
=−e, g1

e (0)=
m
n

, g2
e (0)=−

m
n

, (12)

where e ¥ {0, 1
2 , 1} and m is a fixed integer greater than 5. Consider the

configurations ye on 1
n Z2 defined by:

ye(t)=˛0, if t=(t1, t2) ¥ Ln and g1
e (t1) [ t2 [ g2

e (t1),
1, otherwise.

(13)

Because of F2 every ye has a positive energy. It is easy to check that if n is
large then 4nEe gives the main contribution to the energy of ye and there-
fore Ee > 0.

The subscript in Ee and ee means that the derivative of the functions
in Eq. (12) is − e and that the corresponding configurations defined in
Eq. (13) have the main contribution to energy given by Ee.

We part Mr in the following regions defined by the values of e1/2, e1:

A17={(e1/2, e1) : e1/2 \ 3
2 , e1 \ 2},

A15={(e1/2, e1) : e1 [ 2e1/2 − 1, 1 [ e1 [ 2},

A45={(e1/2, e1) : e1 [ e1/2, e1 [ 1},

A13={(e1/2, e1) : e1 \ 2e1/2 − 1, 1 [ e1/2 [ 3
2},

A23={(e1/2, e1) : e1 \ e1/2, e1/2 [ 1},

A35={(e1/2, e1) : e1 [ 4
3 e1/2, e1 \ e1/2, e1 \ 2e1/2 − 1},

A36={(e1/2, e1) : e1 \ 4
3 e1/2, e1/2 [ 3

2}.

(14)

Every region Aij includes all models of Mr having the values (e1/2, e1) in the
corresponding domain.

We describe the macro-droplet shapes by determining their boundaries
in the domain {(l1, l2) : l2 \ l1 \ 0}. The boundaries are defined as a
function d having its graph stretched between the axis l1=0 and the
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diagonal l1=l2. We consider the droplets with an area equal to 1. There-
fore, the portion of the droplet area in the pointed domain is equal to 1

8 .
The coefficients d in the theorem below must be chosen such that the
droplet area is equal to 1. Of course, those coefficients may easily be com-
puted. However, not to overload the formulae for d we left them non-
computed. It is clear that d takes different values in the different areas,
however we do not use subscripts to lighten notations.

Theorem 2. For the models of Mr the macro-droplet shapes are as
follows:

1. in A17

d(l1)=2d, if l1 ¥ [0, 2d] (15)

2. in A45

d(l1)=−l1+2d, if l1 ¥ [0, de1]. (16)

3. in A15

d(l1)=˛2d, if l1 ¥ [0, 2d(e1 − 1)],
− l1+2 de1, if l1 ¥ [2d(e1 − 1), de1],

(17)

4. in A13 5 A35

d(l1)=˛2d, if l1 ¥ [0, 4d(e1/2 − 1)],
− 1

2 l1+2 de1/2, if l1 ¥ [4d(e1/2 − 1), 4d(e1 − e1/2)],
− l1+2 de1, if l1 ¥ [4d(e1 − e1/2), de1].

(18)

5. in A13 5 A36

d(l1)=˛2d, if l1 ¥ [0, 4d(e1/2 − 1)],
− 1

3 l1+2 de1/2, if l1 ¥ [4d(e1/2 − 1), 4
3 de1/2],

(19)

6. in A23 5 A36

d(l1)=−1
2 l+2d, if l ¥ [0, 4

3 d], (20)

7. in A23 5 A35

d(l1)=˛ − 1
2 l1+2 de1/2, if l1 ¥ [0, 4d(e1 − e1/2)],

− l1+2 de1, if l1 ¥ [4d(e1 − e1/2), de1],
(21)
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Fig. 1. Regions and associated polygons.

The result is illustrated on Fig. 1, where the macro-droplet shapes are
shown for the regions Aij.

The subscripts in the region notations come from the linear pro-
gramming problem we solve to find the macro-droplet shape. There are
seven coefficients and two relations between the coefficients in the problem.
Every coefficient corresponds to a slope of a straight line defining the
macro-droplet shape. The two integers of a region notation subscript refer
to the slopes from which the macro-droplet boundary is built.

Observe that in A17, A45 and A23 5 A36 the polygons do not depend on
their boundary energy. We call those polygons pure one. In other regions
the polygon shape is a function of the energy. They can be considered as a
mixture of pure polygons.
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A familiar shape of a macro-droplet is presented in A17. The co-ordi-
nates of the Ising model in the plane (e1/2, e1) is (3

2 , 2).
We introduce a class of models determined as follows:

1. F(v̄0)=F(v̄1)=0;

2. min
ū ¥ U

F(ū) > 0;

3. max
ū ¥ U

F(ū) < min
w̄ ¨ U

w̄ ] v̄0 and v̄1

F(ū).

These models belong to Mr. Intuitively this is clear since any tile in the
micro-droplet contour which do not belong to U can be ‘‘substituted’’ by
tiles from U which decreases the energy. The set of all of these models
covers the plane (e1/2, e1). The most interesting of these models are those
for which the value of (e1/2, e1) lies within the region A13 5 A35, where the
droplets are 16-edges polygons. Particularly, a model for which (e1/2, e1)=
(`5

2
, `2) and referred to chien model was introduced in ref. 10 and used in

image processing applications (see refs. 11 and 12).

3. PROOF

3.1. The Surface Tension

Our approach is based on the Wulff construction. The main step is the
computation of the surface tension (see ref. 4). In these calculations we do
not use the scaling by 1

n .
For s ¥ R, we define a boundary condition out of VN={t=

(t1, t2) ¥ Z2 : |ti | [ N, i=1, 2} as follows:

xs(t)=˛1, if st1+t2 \ 0
0, if st1+t2 < 0.

(22)

Let XV(s)=XV × {xs} be the set of configurations obtained by joining
every configuration of XV with xs. We use V to denote VN when the value
N is fixed or not important. Let Z(V, b, s)=;x ¥ XV(s) exp{ − bH(x)} be
the partition function in the volume V given the boundary condition (22) at
temperature T=1

b
. Let Z(V, b) be the partition function in V given the

boundary condition equal to 1 on Vc.
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The surface tension along the slope defined by s at zero temperature is
given by:

ys=− lim
N Q .

lim
b Q .

1
bds, N

log
Z(V, b, s)

Z(V, b)
, (23)

where ds, N=2N `1+s2 is the distance between the points (−N, sN) and
(N, −sN).

Remark that the interior limit in (23) drastically simplifies the compu-
tations of ys with respect to the case of a finite temperature (see ref. 4). It is
easy to see that for b Q .

1
bds, N

log
Z(V, b, s)

Z(V, b)
=

Hg
s

ds, N
+O 1 1

b
2 , (24)

where Hg
s =minx ¥ XV(s) H(x). Hence it is enough to find xg

s such that
H(xg

s )=Hg
s for each slope s.

Because of the symmetry properties of the potentials it is enough to
compute the surface tensions for s ¥ [0, 1].

Besides p-contours, we use the standard notion of a contour of con-
figurations. Let x ¥ XV(s) then a set of bonds Xx is a contour of x if
x(t1) ] x(t2) for every b=Ot1, t2P ¥ Xx. We also use the notion of dual
lattice Z2

g=Z2+(1
2 , 1

2). For any vertical (horizontal) bond b=Ot1, t2P,
where t1+(0, 1)=t2 (t1+(1, 0)=t2) there exists a horizontal (vertical)
dual bond b*=Ot1

g, t2
gP of the dual lattice Z2

g intersecting b; that is t1
g=

t1+(1
2 , 1

2) and t2
g=t2 − (1

2 , 1
2). Then t1

g − (0, 1)=t2
g(t1

g − (1, 0)=t2
g).

The contour of x ¥ XV(s) in term of Z2
g is the set Xg

x of all bonds dual
to bonds from Xx. The set Xg

x can be split in maximal connected compo-
nents. All components except one are closed lines. The exception is a non-
closed line Cg

x which connects the bond b* in to b* out, where:

b* in =O( − N − 3
2 , j− − 1

2 ), ( − N − 1
2 , j− − 1

2 )P,

b* out=O(N+1
2 , j+− 1

2 ), (N+3
2 , j+− 1

2 )P,
(25)

with j−=inf{j ¥ Z : j \ s(N+1)}, j+=sup{j ¥ Z : j \ − s(N+1)}.
The set Cx of bonds in Z2 is dual to Cg

x . If b=Ot1, t2P then we note
{b}={t1, t2}. Let {Cx}=1b ¥ Cx

{b}. The same notations are used for the
dual objects b* ¥ Cg

x : {b*} and {Cg
x }.

We call the set of bonds Cx the splitting contour. We consider the split-
ting contour as a directed set of bonds. The direction of Cx is defined by
choosing a direction in Cg

x . First we choose the direction in {Cg
x } from the

point (−N − 3
2 , j− − 1

2) ¥ {Cg
x } to (N+3

2 , j+− 1
2) ¥ {Cg

x }. Namely a point
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tg
1 ¥ {Cg

x } is less than tg
2 ¥ {Cg

x , tg
1 O tg

2 }, if the unique way along {Cg
x } con-

necting tg
1 to (−N − 3

2 , j− − 1
2) does not include tg

2 . Then the direction in Cg
x

corresponding to the direction on {Cg
x } is defined as follows: a bond

bg
1 ¥ Cg

x is less than bg
2 ¥ Cg

x , bg
1 O bg

2 , if any site of {bg
1 } is not greater than

every site of {bg
2 }. Next, a bond b1 ¥ Cx is less than b2 ¥ Cx, b1 O b2, if

the same relation bg
1 O bg

2 holds for the dual bonds. Let Ĉx be a set of sites
such that t ¥ Ĉx if there exists b ¥ Cx such that b … Wt. Recall that Wt=
{u ¥ Z2 : |t − u| [ `2}. Apparently that {Cx} … Ĉx.

Let g be a continuous function on [ − N − 1, N+1] such that

N+1 \ g(−N − 1) \ g(N+1) \ − N − 1. (26)

Consider the following configuration on VN

xg(t1, t2)=˛1, if t2 \ g(t1),
0, if t2 < g(t1).

(27)

It is clear that xg ¥ XVN
(s), where s=g(−N − 1) − g(N+1)

2N+2 . Any function g on
[ − N − 1, N+1] with (26) is called a splitting function.

It follows from the regularity that for any configuration x ¥ XVN
(s)

there exists a configuration y ¥ XVN
(s) such that the splitting contour Cy is

regular and H(y) [ H(x)+o(1). At zero temperature any configuration of
XVN

(s) minimizing the energy has no contour except a splitting contour.
Thus we can restrict our considerations only to the set of configurations
with a regular splitting contour.

Therefore to study the surface tension we only consider configurations
of XVN

(s) with a regular contour.
Let

eN(s)=
H(xg

s )
2E0N

, (28)

where E0 is defined in (10) and xg
s ¥ XV(s) is a configuration having

minimal energy. Our closest goal is to find the configurations xg
s in VN for

large N and for s ¥ [0, 1]. In fact we find a configuration xg
s ¥ XVN

(s) such
that the energy of xg

s is minimal in XVN
(s) up to a constant which is

independent from N.
The next proposition gives the value of e(s)=limN Q . eN(s) as a

function of s ¥ [0, 1] for the regular models.

Proposition 3. For the models in Mr the minimal value of the
energy is:
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If s [ 1
2 then

e(s)=˛
2e1/2, if (e1/2, e1) ¥ A23,

2e1, if (e1/2, e1) ¥ A45,

4(e1/2 − 1) s+2, if (e1/2, e1) ¥ A13,

2(e1 − 1) s+2, if (e1/2, e1) ¥ A15,

2s+2, if (e1/2, e1) ¥ A17.

(29)

If s > 1
2 then the energy e(s) has the same expressions as in the case s [ 1

2 if
(e1/2, e1) ¥ A17 2 A15 2 A45. For the other regions of (e1/2, e1) we have

e(s)=˛4(e1 − e1/2) s+2(2e1/2 − e1), if (e1/2, e1) ¥ A35,
4
3 e1/2s+4

3 e1/2, if (e1/2, e1) ¥ A36.
(30)

Observe that e(s) is linear in A15, A17 and A45, and piece-wise linear in
A23 5 A36, A13 5 A36, A23 5 A35 and A13 5 A35.

Proof. The proof is composed of two parts. In the first one we find
yg

s having minimal energy among configurations having a so called ‘‘cano-
nical’’ splitting contour. In the second step we show that for a configura-
tion x ¥ XVN

(s) with an arbitrary regular contour we can find a configura-
tion y ¥ XVN

(s) having a ‘‘canonical’’ splitting contour and such that
H(y) [ H(x). The second step is rather technical and we locate it in
Appendix.

Step 1. The Optimal Shape of Canonical Contours. We define the
canonical splitting contour by a splitting function:

g(−N)=sN,
d
dt

g(s)=˛
− s if s ¥ (−N − 1, −N)
0 if s ¥ (−N, s0),
1
2 if s ¥ (s0, s+

1/2),
− 1

2 if s ¥ (s+
1/2, s−

1/2),
1 if s ¥ (s−

1/2, s+
1 ),

− 1 if s ¥ (s+
1 , s−

1 ),
− 2 if s ¥ (s−

1 , N),
− (g(N) − sN) if s ¥ (N, N+1),

(31)

where s0 [ s+
1/2 [ s−

1/2 [ s+
1 [ s+

1 [ s−
1 belong to the interval [ − N, N] and

are such that s+
1/2 − 1

2 s0 − 3
2 s−

1/2+2s+
1 +s−

1 − 2N(1 − s) \ 0 (see Fig. 2). There
are 7 linear pieces which constitute the splitting function g of a canonical
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splitting contour on [ − N, N]. The derivatives of the pieces are 0, ± 1
2 , ± 1,

− 2, and − (g(N) − sN). If g(N) > − sN then the last linear piece of g
creates a vertical interval of the dual lattice along which the corresponding
configuration yg takes different values on both sides. Next we find the
splitting function such that the corresponding configuration has the
minimal energy.

Lemma 4. Let ZVN
(s) ı XVN

(s) be the set of configurations having
a canonical splitting contour. Then the minimal energy for configurations
of ZVN

(s) are the same as in Proposition 3.

Proof. We shall use the following notations

a1=s0+N, a2=s+
1/2 − s0, a3=s−

1/2 − s+
1/2,

a4=s+
1 − s−

1/2, a5=s−
1 − s+

1 , a6=1
s (g(s−

1 ) − g(N)),

a7=1
s (g(N) − sN).

The energy of the configuration xg having g as a splitting function is

E=E0a1+E1/2(a2+a3)+E1(a4+a5)+E1/2sa6+E0sa7+O(1), (32)

as N Q .. The last term O(1) corresponds to the energy of the junctions
between the pieces with different slopes. Our goal is to find a minimal value

Fig. 2. Canonical contour.
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of the energy in (32). It means we have to find values of the variables ai

minimizing (32). This is a standard problem of the linear programming.
There are two relations for the variables ai:

2N=a1+a2+a3+a4+a5+1
2 sa6,

2Ns= − 1
2 (a2 − a3) − a4+a5+s(a6+a7),

(33)

that are an easy consequence of the splitting function definition.
We study separately the cases s [ 1

2 and s > 1
2 .

Let s [ 1
2 . Using (33) we can exclude any pair (ai, aj), i ] j, of

variables in (32). We obtain the following expressions of the energy:

E(â2, â3)=a1(E0 − E1/2)+a4(E1 − E1/2)+a5(E1 − E1/2)+sa6
1
2 E1/2

+sa7E0+2NE1/2+O(1),

E(â4, â5)=a1(E0 − E1)+(a2+a3)(E1/2 − E1)+sa6(E1/2 − 1
2 E1)+sa7E0

+2NE1+O(1),

E(â1, â3)=a22(E1/2 − E0)+a4(2E1/2 − 3E0+E1)+a5(E0 − 2E1/2+E1)

+sa6(3
2 E0 − E1/2)+sa7(3E0 − 2E1/2)

+2(1 − 2s) NE0+4sNE1/2+O(1),

E(â1, â5)=a2(E1/2+1
2 E1 − 3

2 E0)+a3(E1/2 − 1
2 E1 − 1

2 E0)+a42(E1 − E0)

+sa6(1
2 E0+E1/2 − E1)+sa7(2E0+E1)

+2(1 − s) NE0+2sNE1+O(1),

E(â1, â7)=a2(E1/2 − 1
2 E0)+a3(E1/2 − 3

2 E0)+a4E1+sa5(E1 − 2E0)

+sa5(E1/2 − 3
2 E0)+2(1+s) NE0+O(1),

(34)

as N Q .. The symbol E(âi, âj) means that the expression for the energy
does not explicitly include the variables ai and aj. If the coefficients at the
variables ai presented in a corresponding expression are positive then the
minimal value of the energy is attained when the variables are equal to 0.
For example, consider the first equality in (34). The positivity of all the
coefficients at the variables ai defines a region in the space of the param-
eters e1/2, e1. It is the region A23 shown on the Fig. 1 (see (14)). In this
region the minimal value of the energy is E(â2, â3)=2NE1/2+O(1). The
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variables having non-zero values are a2=N(1 − 2s) and a3=N(1+2s).
The splitting function in this case is:

g(−N)=sN,
d
dt

g(s)=˛ 1
2 if s ¥ (−N, 2 − 2sN),
− 1

2 if s ¥ (−2sN, N).
(35)

A similar analysis can be performed for the 5 expressions given in (34). It is
essential that the obtained results are valid only for s [ 1

2 . For example, we
have a negative a2 if s > 1

2 in the first equation in (34). Let s > 1
2 . It is not

difficult to obtain that the answer is the same as in the previous case in the
regions A17, A15 and A45. To obtain optimal splitting lines and correspond-
ing minimal energies in the regions A23 and A13 we use the following
expressions for the energy

E(â3, â5)=a1(E0 − 2E1/2+E1)+a22(E1 − E1/2)+a44(E1 − E1/2)

+sa6(2E1/2 − 3
2 E1)+sa7(2E1/2 − 2E1+E0)+4N(1 − s) E1/2

+2(2s − 1) NE1+O(1)

E(â3, â6)=a1(E0 − 2
3 E1/2)+a2

2
3 E1/2+a4E1+a5(E1 − 4

3 E1/2)

+sa7(E0 − 2
3 E1/2)+4

3 (1+s) NE1/2+O(1).

(36)

For example, in A36 for s > 1
2 we obtain

g(−N)=sN, d
dt g(s)=3 − 1

2 if s ¥ (−N, N(5
3 − 4

3 s)),

− 2 if s ¥ (N(5
3 − 4

3 s), N).
(37)

We have A13 2 A23=A35 2 A36. Hence the energy e(s) has two linear pieces
as a function of s in this region. L

Step 2. In this step we study configurations with non-canonical
splitting contours. Recall that we study regular models of Mr. Hence we
can consider configurations of XV(s) having regular contours.

Lemma 5. Let x ¥ XV(s) and Xx=Cx. Then there exists a configu-
ration x0 ¥ XV(s) such that H(x0) [ H(x), Xx0

=Cx0
and Cx0

is canonical.

The main steps of this lemma proof are the following. First we remove
all folds of the contour such that the resulting contour is monotone. Then
we permute the monotone contour to obtain a contour composed by pieces
constituted by tiles of the same type. The resulting contour is close to a
canonical one. The last reconstruction gives a configuration x0 having a
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canonical contour Cx0
with the same slope as Cx. The energy of the config-

uration x0 is not greater than the energy of x.
The complete proof is given in the Appendix.

3.2. Shape

As we have seen in the previous section the minimal energy e(s) is a
piece-wise linear function of s.

The surface tension ys is given by:

ys=
e(s)

`1+s2
, (38)

(see (23), (24), and (28)). To find the droplet shapes we use the Wulff con-
struction. (4) Let (see ref. 4, chap. 2, (2.1.2))

Ss=3l=(l1, l2) ¥ R2
+ :

l1s+l2

`1+s2
[

eN(s)

`1+s2
4 . (39)

Let also T0={l=(l1, l2) ¥ R2
+ : l1 \ 0} and T1={l=(l1, l2) ¥ R2

+ : l2 −
l1 \ 0}. Then the Wulff construction defines the droplet shape as follows:
S=4s ¥ [0, 1] Ss 5 T0 5 T1. In fact S is one eighth of the droplet. The whole
droplet can be obtained by the reflections of S with respect to the diagonals
and the axes.

Let e(s)=as+b be a linear function, where 0 [ a [ b. Then the point
(a, b) ¥ R2 belongs to the boundaries of all Ss. Hence S=S0 5 S1 5 T0 5 T1.
The boundary d(l) of the droplet in the domain {l=(l1, l2) ¥ R2 :
0 [ l1 [ l2} is given by:

d(l)=3b, if l ¥ [0, a]
− l+a+b, if l ¥ [a, a+b

2 ]
(40)

If a=b then S=S0 5 T0 5 T1 and if a=0 then S=S1. In the considered
cases we have a=b in the region A17 since e(s)=2s+2. Therefore the
droplet boundary d is the horizontal straight line. The case a=0 holds in
the region A45, where e(s)=2e1. Hence d is a straight line with its slope
− 1. In the region A15 the droplet boundary is like in (40) with a=2(e1 − 1)
and b=2. Recall that 1 [ e1 [ 2 in A15.

In the region A23 2 A13=A36 2 A35 the energy is a piece-wise linear
function composed by two pieces. To find the droplet shape in the regions
we shall use
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Lemma 6. Let points (a1, b1) and (a2, b2) be such that
a1+2b1=a2+2b2 and let

e(s)=˛a1s+b1, if 0 [ s [ 1
2 ,

a2s+b2, if 1
2 [ s [ 1.

Then

S=S0 5 S1/2 5 S1 5 T0 5 T1.

If a1 [ a2 then

d(l)=˛b1, if 0 [ l [ a1,
− 1

2 l+(b1+1
2 a1), if a1 [ l [ a2,

− l+(b2+a2), if a2 [ l [
a2+b2

2 ,
(41)

if a1 > a2 then

d(l)=3b1, if 0 [ l [ a2+b2 − b1,
− l+(b2+a2), if a2+b2 − b1 [ l [

a2+b2
2 ,

(42)

Remark that since a1+2b1=a2+2b2 we have that 1
2 (a2+b2) [ b1.

Therefore the interval [a2+b2 − b1, 1
2 (a2+b2)] is not empty.

The proof is straightforward and omitted here.
We apply this lemma for the region B=A23 2 A13. There are four

regions in B having different shapes of droplets. In the region A13 5 A35 we
have

e(s)=˛4(e1/2 − 1) s+2, if 0 [ s [ 1
2 ,

4(e1 − e1/2) s+2(2e1/2 − e1), if 1
2 [ s [ 1.

(43)

Hence a1=4(e1/2 − 1), b1=2 and a2=4(e1 − e1/2), b2=2(2e1/2 − e1).
Recall that e1 \ 2e1/2 − 1 in A13. Thus a1 [ a2. Using Lemma 6 we obtain in
A13 5 A35

d(l)=˛2, if l ¥ [0, 4(e1/2 − 1)],
− 1

2 l+2e1/2, if l ¥ [4(e1/2 − 1), 4(e1 − e1/2)],
− l+2e1, if l ¥ [4(e1 − e1/2), e1].

(44)

Similar considerations give the droplet shape in the last three subregions
of B. The full result is formulated in Theorem 2.
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We note that for all the subregions we have a1 [ a2. However, some
lines in (41) are trivial. The last line is trivial in A13 5 A36 and A23 5 A36.
Moreover the first line is trivial in A23 5 A36.

4. ON REGULARITY

In this section we give several examples of models such that the
behaviour of the droplet micro-boundaries is dramatically different of that
for the regular one. We discuss also sufficient conditions for regularity
without giving proofs.

4.1. Examples

The regularity requirement we used is essential for the proof of the
main theorem. The next examples show that there exist models satisfying
F1 and F2 with non-regular microdroplet boundaries.

In all the following examples, when we assign an energy value to a tile,
we assume that all the tiles obtained from the first one by symmetrical
transformations have the same energy.

Example 1. Let 0 < a < b. As usually

F(v̄0)=0.

Let

F R1 1 1
0 1 0
0 0 0

S=F R1 1 1
1 1 1
0 1 0

S=F R1 1 1
1 1 1
1 0 1

S=a.

All other tiles have energy equal to b. It easy to understand that for large b
a

the square composed of 0’s with boundary as shown below has the minimal
energy of all possible shapes.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Example 2. Let c > b > a > 0. The potential function is

(1) F(v̄0)=0,

(2) F R 1 1 1
1 0 1
1 0 1

S=F R 1 1 1
0 1 0
0 1 0

S=−a

(3) F R 1 1 1
1 1 1
0 1 0

S=F R 1 1 1
1 1 1
1 0 1

S=b

(4) F(ū)=c for all tiles ū not listed above.

For large c
b the micro-droplet boundary looks like it is shown below

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The conditions F1 and F2 hold since b > a.
Remark that we must have a negative value of the potential function

for some tiles. If the energy value of the tiles listed in (2) is positive then the
energy of the boundary in the picture above is not minimal.

We can not directly continue this idea for new examples having non-
regular boundaries. It seems there is no model having droplet micro-
boundary like shown below and satisfying F2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

However more sophisticated examples can be found.
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Example 3. Let a > 0 and c > b > 0 be such that

8b > a (45)

and c is large enough. We consider a model with

(1) F(v̄0)=0,

(2) F R 1 1 1
1 0 1
1 0 1

S=−a

(3) F R 1 1 1
1 1 1
0 1 0

S=F R 1 1 1
1 1 0
1 1 1

S=F R 0 0 0
1 1 1
1 1 0

S=F R 0 0 0
1 1 1
1 0 1

S=b

(4) for all other tiles ū not listed above F(ū)=c.

The relation (45) gives F2. Then the boundary has one of the forms shown
below.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

There is a freedom in the boundary construction.
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Example 4. Let F is equal to a > 0 for the following tiles

R1 1 1
1 1 1
0 1 1

S , R1 1 1
1 1 1
0 0 1

S , R1 1 1
0 0 1
1 1 0

S , R1 1 1
0 1 1
1 0 0

S , R0 0 1
1 1 0
0 0 1

S , R0 0 1
1 0 0
1 0 0

S .

All other tiles have an energy value equal to b > a except as usually the tiles
v̄0, v̄1 having the energy 0. If b

a is large then the droplet boundary is as
shown in the following picture.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4.2. Conjectures About the Regularity

In this section we present two sufficient conditions of regularity. We
assume that F1, F2 are satisfied. It seems that both conditions cover a
rather small area of models. We formulate them as theorems, however we
do not prove them here. We think that the proof of the second theorem is
not difficult. But a proof of the first one seems to be long and technical.
Not to overload the text we do not give the proofs. One can consider these
theorems as conjectures.

Both conditions are based on an energy prevailing assumption. The
Ising model and some of the Gerzik–Dobrushin (see ref. 9) models satisfy
the first condition and the chien model (see ref. 10) satisfies the second one.
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Let us consider the following set of tiles

T̃=˛R 1 1 1
1 0 1

r31 r32 r33

S , R
1 1 0

1 0 1

1 0 1

S , R1 0 1
1 0 1
1 0 1

S , R1 1 0
1 0 1
1 0 0

S , R1 1 0
1 0 1
0 1 1

S ,

R1 1 0
1 0 1
0 0 1

S , R1 1 0
0 0 0
1 1 1

S , R1 1 1
1 0 0
1 0 0

S , R1 1 1
1 0 0
0 0 1

Sˇ ,

where rij ¥ {0, 1}, i, j=1, 2, 3. Let T=GT̃. We introduce the map x of T
to a set xT as follows:

x: R r11 r12 r13

r21 r r23

r31 rr32 r33

S
Q
R r11 r12 r13

r21 1 À r r23

r31 r32 r33

S , (46)

where 1 À r=1+r mod(2). For any tile r̄ let q(r̄) be a 5 × 5 matrix such
that r̄ is the central tile of q(r̄). More precisely, let

q(r̄)=Rq11 · · · q15

· · ·
q51 · · · q55

S ,

where qij ¥ {0, 1}. Then qij=ri − 1j − 1 for 2 [ i, j [ 4. The energy of q(r̄) is

H(q(r̄))= C
p̄ ı q(r̄)

F(p̄),

where p̄ is a tile and p̄ ı q(r̄) means that p̄ is a tile which is included into
q(r̄). Obviously there are 9 tiles included into q(r̄).

Assume that

R1. for any r̄ ¥ T and any q(r̄)

H(q(r̄)) \ H(q(xr̄ )). (47)

Then

Theorem 7. Any model of M satisfying the condition R1 is regular.
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The next theorem must provide another condition ensuring the
regularity:

Theorem 8. Assume that for a model of M the following inequality
holds

c1=max
ū ¥ U

{F(ū)} < c2=min
r̄ ¨ U

{F(r̄)}. (48)

If c2 − c1 is large enough then the model is regular.

APPENDIX A: PROOF OF LEMMA 5

We assume that the splitting contour Cx of a configuration x ¥ XV(s)
is an arbitrary regular one. We find a configuration x0 such that
H(x0) [ H(x), the slope of x0 is equal to the slope of x, that is x0 ¥ XV(s),
and Cx0

is canonical.
Finding x0 we apply to x a number of transformations which do not

increase the energy. To describe the transformations we introduce several
notions and notations. For integer N1, N2, M1, M2 let

V−M1, M2
−N1, N2

={(t1, t2) ¥ Z2: − N1 [ t1 [ N2, −M1 [ t2 [ M2}

When N=N1=N2=M1=M2 we shall use the notation VN=V−N, N
−N, N as

before. We use V to denote V−M1, M2
−N1, N2

when the values of integers N1, N2, M1

and M2 are either fixed or not important.

A.1. Rebuilding 1

First we construct transformations taking x to x1. The new configura-
tion x1 has a monotone splitting contour Cg

x1
and is defined on a volume

V−N1, N
−N, N2

including VN. The slope of x1 will be greater than the slope s of x,
and H(x)=H(x1)+O(1).

Lemma 9. Let x ¥ XVN
(s) be a regular configuration. Assume that

Xx=Cx. Then there exists a configuration x2 on some volume V−N, N
−N, N2

` VN

such that

1. H(x2)=H(x),

2. there is a function g on [ − N − 1, N2+1] such that Cg
x2

is defined
by g.
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Proof. Using the order in {Cg
x } we introduce the notion of interval:

[(m1, k1), (m2, k2)]={(m, k) ¥ {Cg
x } : (m1, k1) Q (m, k) Q (m2, k2)}

for (m1, k1) Q (m2, k2); (m1, k1), (m2, k2) ¥ Z2
g. We also use the notation

[ · , (m, k)]([(m, k), · ]), where ‘‘ · ’’ means minimal (maximal) site on {Cg
x }.

For any column Lm={(m, k): − N − 1
2 [ k [ N+1

2 , k ¥ Zg=Z+1
2} let

Km=Lm 5 {Cg
x }. Here m ¥ Zg and − N − 1

2 [ m [ N+1
2 . A column Lm is

simple if Km is a one-point set. Let Lm be not simple. Then the column Lm

contains a vertical fold F ı Km, if:

1. there exist constants k(F) and k̄(F) ¥ Zg such that F=
[(m, k(F)), (m, k̄(F))],

2. let (m
a

, k
¯

)=max{(mŒ, kŒ) ¥ {Cg
x } : (mŒ, kŒ) O (m, k(F))} and (m̄, k̄)

=min{(mŒ, kŒ) ¥ {Cg
x } : (mŒ, kŒ) P (m, k̄(F))} then either

m
a

=m̄=m − 1 (49)

or

m
a

=m̄=m+1. (50)

It is clear that F is a maximal connected component in Km. (Remark that
unlike p-connection we use here the term connection in the usual geomet-
rical sense).

If all Lm, m ¥ [ − N − 1
2 , N+1

2], are simple then the contour Cg
x can be

defined by a function g. Moreover if for any m such that Lm is not simple
Lm has no folds then the contour Cg

x can be represented by a splitting
function g, as well. In those cases all tiles centered in Ĉx belong to U.

Let now m0 ¥ [ − N − 1
2 , N+1

2] be the maximal number such that Lm0+1

is simple and Lm0
contains a fold. Since m0 is maximal then all folds in Lm0

are satisfied (49). Assume that F0 is the last fold in Lm0
. It means that

FŒ Q F0 for any fold FŒ in Lm0
. Let m1 ¥ Z be minimal such that Lm1

con-
tains a fold F1 and F1 P F0. Let F1 be maximal satisfied mentioned condi-
tions. The fold F1 exists since F0 is the fold having maximal value of
abscissa m0.

We introduce a transformation R of Cg
x called double-refection as

follows: every bond b=O(mŒ, kŒ)(mœ, kœ)P such that (mŒ, kŒ), (mœ, kœ) ¥

[(m0, k(F0)), (m1, k̄(F1))] is taken to Rb=O(2m0 − mŒ, kŒ)(2m0 − mœ, kœ)P.
And every bond b=O(mŒ, kŒ)(mœ, kœ)P such that (mŒ, kŒ), (mœkœ) ¥

[(m1, k̄(F1)), · ] is taken to Rb=O(2(m0 −m1)+mŒ, kŒ)(2(m0 −m1)+mœ, kœ)P.
All other bonds of Cg

x are not moved. The double-reflection reflects
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Fig. 3. Double reflection.

[(m0, k(F0)), (m1, k̄(F1))] with respect to the column Lm0
, and shifts

[(m1, k̄(F1)), · ] to the right for the distance 2(m0 − m1) (see Fig. 3).
It is clear that the set of bonds RCg

x is located in the volume
V−N, N

−N, N+m0 − m1
` VN. Let x̂ be the configuration on V−N, N

−N, N+m0 − m1
such that

RCg
x is its splitting contour, that is Cg

x̂ =RCg
x , and Xg

x̂ =Cg
x̂ .

Further we use the following notations. Let B be a set of bonds on Z2.
Then NBM ` R2 is a set of points of R2 which either belong to an interval in
R2 corresponding to a bond b ¥ B or are situated in a triangle generated by
two bonds b1, b2 ¥ B having a common site. Let V ` Z2 then B(V) is the set
of bonds such that b=Ot1, t2P ¥ B(V) if t1 and t2 ¥ V.

We now show that the energy of x̂ is equal to the energy of x. Only
tiles xWt

and x̂Ws
have non-zero energy if t ¥ Ĉx and s ¥ Ĉx̂. Therefore our

goal is to show that H(xĈx
)=H(x̂Ĉx̂

). To this end we part Ĉx into several
pieces.

Let Ĉ0
x ı Ĉx be such that NWtM 5 [ · , (m0, k(F0))] ] ” and NWtM 5

[(m0, k(F0)), · ]=” for any t ¥ Ĉ0
x. It means bonds composed by sites of

Ĉ0
x are not moved by the double-reflection. Thus xWt

=x̂Wt
and the energy

of those part of the contour is not changed.
Next we consider a set Ĉ1

x such that t ¥ Ĉ1
x if (m0, k̄(F0)) ¥ NWtM. Then

there are four sites composing Ĉ1
x:

{(m0 ± 1
2 , k̄(F0) ± 1

2)}.

We use the notation te1, e2
=(m0e1

1
2 , k1

0e2
1
2), where e1, e2 ¥ {+, −}. Let

us consider an example to show that the energy before and after the
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double-reflection are the same. We consider two sites t−− and t+− and cor-
responding tiles

Wt− −
=R0 0 1

0 1 1
r 1 1

S , Wt+ −
=R0 1 1

1 1 1
1 1 1

S

before the double-reflection. Here r ¥ {0, 1} depends on the contour Cx. We
have the tiles shown above because of the contour regularity. After the
double-reflection we obtain the following tiles

RWt− −
=R0 0 1

0 0 0
0 0 0

S , RWt+ −
=R0 1 1

0 0 1
0 0 q

S ,

where q=1 − r. We used the same symbol R applied to site transformation.
It is evident that

F(Wt− −
)+F(Wt+ −

)=F(RWt− −
)+F(RWt+ −

).

We denote the next piece of Ĉx by Ĉ2
x which is defined such that

NB(Ĉ2
x)M 5 [(m0, k̄(F0)), (m1, k̄(F1))] ] ”, and (m0, k̄(F0)) ¨ NWtM and

(m1, k̄(F1)) ¨ NWtM for any t ¥ Ĉ2
x. It follows from the regularity that if

t ¥ Ĉ2
x then WRt 5 Ĉx=” and Wt 5 Ĉx̂=”. Moreover if xWt

=R r11 r12 r13

r21 r22 r23

r31 r32 r33

S

for Ĉ2
x then x̂WRt

=R 1 − r13 1 − r12 1 − r11

1 − r23 1 − r22 1 − r21

1 − r33 1 − r32 1 − r31

S. It is clear from the above properties

that the energies of xĈ
2
x

and x̂RĈ
2
x

are the same.
The next piece Ĉ3

x of Ĉx is defined by the following relation

NWtM 5 [(m1, k̄(F1)), · ] ] ”

for t ¥ Ĉ3
x. The energies of xWt

and x̂WRt
are the same because x̂WRt

is a shift
of xWt

.
It is clear that the fold F0 in the column Lm0

is removed by R. The
configuration x̂ is defined on the volume V−N, N

−N, NŒ, where NŒ − N is a value of
the shift of the double-reflection determined above.

After a finite number of double-reflections corresponding to different
vertical folds of x we obtain a configuration x2 without the vertical folds,
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and which is defined on a volume V−N, N
−N, N2

where N2 − N is the total shift
which appears by folds removing. Then there is a function g defining the
splitting contour Cg

x2
. It is clear that the energy of x2 is equal to the energy

of x. L

The configuration x2 has no vertical folds. Next we construct a con-
figuration x1 having a monotone splitting contour, that is we eliminate all
folds.

Lemma 10. There exists a configuration x1 on a volume V−N1, N
−N, N2

containing V−N, N
−N, N2

such that

1. H(x2)=H(x1),

2. there is a monotone function h on [ − N − 1, N2+1] such that Cx1

is defined by h.

Proof. We consider rows Mm={(k, m) : k ¥ [ − N − 1, N2+1]} … Zg,
for m ¥ Zg. In the case Km=Mm 5 {Cg

x2
} ] ” we call m simple if Km is

one-point set. If Km is not simple then it is composed of connected com-
ponents. Let F ı Km a connected component having more than one point.
Let k(F) be such that (k(F), m)=min{(k, m) ¥ F} and similarly let k̄(F)
be such that (k̄(F), m)=max{(k, m) ¥ F}. Let (k

¯
, m
a

)=max{(kŒ, mŒ) ¥

{Cg
x2

} : (kŒ, mŒ) O (k(F, m)} and (k̄, m̄)=min{(kŒ, mŒ) ¥ {Cg
x2

} : (kŒ, mŒ) P

(k̄(F), m)}.
A connected component F ı Km is a horizontal fold if m

a
=m̄.

If a contour Cg
x2

is determined by a function g and there is no folds
then g is monotone.

Assume next that m0 is maximal such that Km0
includes a fold. For any

fold in Km0
we have m̄0=m

a 0=m0 − 1. Let m1 be minimal such that Km1

includes a fold and B(Km1
) Q B(Km0

). The existence of such m1 is a conse-
quence of the existence of m0. It follows from the minimality of m1 that
m̄1=m

a 1=m1+1 for any fold in Km1
. Let F0 a minimal fold on Km0

and F1

be a maximal fold on Km1
.

We introduce a transformation R called double-reflection. The usage of
the same term that we introduced in Lemma 9 will not lead to a confusion
because we use only last notion in this proof. The double reflection reflects
the piece [(k̄(F1), m1), (k̄(F0), m0)] of {Cg

x2
} with respect to the row Mm1

,
and shifts the part [(k̄(F0), m0), · ) of the contour down with the distance
2(m0 − m1). The other part of the contour is not moved. The configuration
x̂ such that Cg

x̂ =RCg
x2

is defined on the volume V−N − 2(m0 − m1), N
−N, N2

, where N2 is
defined in Lemma 9 proof.
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The double-reflection removes F0. Remark that the row Mm0
can

include several folds. The equality H(x2)=H(x̂) can be proved in the same
way as it was done in Lemma 9.

Iterating the above construction we obtain a configuration x1 with a
splitting contour defined by a monotone function having its energy equal
to x2. L

Remark that bout of x1 is shifted down with the respect to bout of x2 by
N1 − N. Hence the slope of x1 is

s1=
(2s − 1) N+N1

N+N2+2
. (51)

5.2. Rebuilding 2

Next we rebuild the configuration x1 to the canonical shape.

Lemma 11. For any configuration y having a monotone splitting
contour there exists a configuration z defined in the same volume and with
the same slope as y and such that

1.

H(z) [ H(y)+O(1) (52)

when N Q ..

2. The splitting contour Cg
z of z is canonical.

Proof. We represent a monotone decreasing contour Cg
y as a

sequence of+1’s and − 1’s. We assign+1 to every horizontal bond bg ¥ Cg
y

and − 1 to every vertical bond of Cg
y . Because of the regularity of contours

only 14 of 16 4-tuples sequences can be met in this representation of the
contour. Namely, there are the following 7 4-tuples sequences

+1+1+1+1, +1+1 − 1+1, +1+1+1 − 1, − 1+1+1+1,

+1 − 1+1+1, − 1+1+1 − 1, − 1+1 − 1+1,
(53)

and sequences obtained from the above by flipping +1 to − 1 and vice
versa. The energy of every 4-tuple in (53) is a sum of energy of two tiles.
It is
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E(+1+1+1+1)= F R1 1 1
1 1 1
0 0 0

S+F R1 1 1
0 0 0
0 0 0

S

E(+1+1 − 1+1)=E(+1 − 1+1+1)=F R1 1 1
1 1 1
0 1 1

S+F R1 1 1
0 0 1
0 0 0

S

E(+1+1+1 − 1)=E(−1+1+1+1)=F R1 1 1
1 1 1
0 0 1

S+F R1 1 1
0 0 0
0 0 0

S

E(−1+1+1 − 1)= 2F R1 1 1
1 1 1
0 0 1

S

E(−1+1 − 1+1)= F R1 1 1
1 1 1
0 1 1

S+F R1 1 1
0 1 1
0 0 1

S .

(54)

We rebuild Cg
y to a canonical form using the new representation.

The monotone canonical contour is divided into 5 pieces. We list
below all the pieces from the left side of V̄ to the right one by showing
2-tuples or 3-tuples which compose pieces.

1. Piece 1 is composed by 2-tuples+1+1
2. Piece 2 is composed by 3-tuples − 1+1+1
3. Piece 3 is composed by 2-tuples − 1+1
4. Piece 4 is composed by 3-tuples − 1 − 1+1
5. Piece 5 is composed by 2-tuples − 1 − 1

We recall that+1 is assigned to the most left bond bg in of Cg
y (see (25)).

We rebuild Cg
y such that a new contour will be canonical, monotone

and connect bg in and bgout. The energy of the new contour differs from the
energy of Cg

y by a constant for all N.
We fix a string of+1’s starting from the left, namely, from bg in. It is a

part of Piece 1. Then we find every sequence of the kind:

s=−1+1+1 · · · +1 − 1, (55)

where a number p of +1’s between two − 1’s is greater than 2. We replace
p − 2 of +1’s to Piece 1 such that we obtain the 4-tuple − 1+1+1 − 1
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instead of s. The string of +1’s having its length p − 2 is joined to the left
shell of+1’s. The energy of s, is

E(s)=F R0 1 1
0 0 0
0 0 0

S+F R1 1 1
1 1 1
0 0 0

S+F R1 1 1
0 0 0
0 0 0

S+ · · ·

+F R1 1 1
0 0 0
0 0 0

S+F R1 1 1
1 1 1
0 0 1

S .

By the replacement we obtain the energy of the 4-tuple − 1+1+1 − 1

E(−1+1+1 − 1)=F R0 1 1
0 0 0
0 0 0

S+F R1 1 1
1 1 1
0 0 1

S .

Let Cg
y1

be a new contour with a corresponding configuration y1. If the
bond next to the right of bg in is horizontal (that is it has +1) then the
energy contours Cg

y and Cg
y1

are the same. Otherwise the energy of Cg
y and

Cg
y1

can be different. There are three places in y1, where the energy might
be changed. Namely, it is the place in Cg

y , where y was cut (to the right
of bg in) and two places in Cg

y1
, where a string of +1’s having its length

equal to p − 2 was sewed in.
Consequent applications of this rebuilding give a new contour Cg

yk

with a corresponding configuration yk such that Piece 1 composition is
completed, that is there are no strings of+1’s longer than 2 in the last part
of Cg

yk
. The difference of the energy between y and yk is the same as

between y and y1.
We obtain piece 5 composed by − 1’s in the similar way by rebuilding

strings+1 − 1 · · · − 1+1 to the left of bgout.
Next we construct Piece 2. The piece must be a periodical sequence

+1+1 − 1+1+1 − 1+1+1 − 1... ,

where the first two elements +1+1 belong to the first piece (if it exists). It
might not be the first +1+1. Then we have a contribution to O(1).
Assume we have a similar sequence attached to the right end of Piece 1.
Then we have the following string

+1+1 − 1 |
| +1 − 1 (56)
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on the right end of this sequence. The first three elements belong to Piece 2

we are constructing. The sign |
| means the end of a part of Piece 2 that

exists at the moment. Next we are looking for the first string +1+1 − 1 to
the right of (56). Assume there exists a periodical string of the kind

+1+1 − 1+1+1 − 1 · · · +1+1 − 1

which is located to the right of (56) on some distant from it. Then we

replace this string and attach it to the right end of Piece 2, before the sign |
|

(see (56)). We have to show that the energies of the contours before and
after the replacement are the same. To this end we check that changes of
the energy do not occur at the points where the contours were cut and
sticked.

Let

· · · +1+1 − 1a1a2a3 · · · b1b2b3+1+1 − 1 · · · +1+1 − 1c1c2c3 · · · (57)

be the contour before the replacement, and

· · · +1+1 − 1+1+1 − 1 · · · +1+1 − 1a1a2a3 · · · b1b2b3c1c2c3 · · · (58)

be the contour that is obtained after the replacement. We have to evaluate
the energy of b1b2b3c1c2c3 and +1+1 − 1+1+1 − 1 and compare it with
the energy of b1b2b3+1+1 − 1 and +1+1 − 1c1c2c3. Remark that a1=+1
and a2=−1. Because of the contour regularity, it is impossible that
a1=−1. The value of a3 can be arbitrary. By the same reasons and because
we have no sequences +1+1+1 · · · in the studied piece of the contour we
obtain that b2=+1, b3=−1. Recall that+1 or − 1 are assigned to bonds.
Let b(d), where d ¥ {+1, −1}, be a bond having d assigned to it. Because
b(b1) O b(b3) we have b1=−1, otherwise the sequence +1+1 − 1 occurs
earlier than we assumed. Also c1=+1, c2=−1 and c3 is arbitrary. Hence
(57) and (58) are

· · ·+1+1−1 |
| +1−1a3 · · · −1+1−1 |

| +1+1−1· · ·+1+1−1 |
| +1−1c3 · · ·

(59)

· · ·+1+1−1 |
| +1+1−1· · ·+1+1−1 |

| 1−1a3 · · · −1+1−1 |
| +1−1c3 · · ·

(60)
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We show now that the energy of (59) and (60) are equal. To this end we
have to compare the energies of strings around vertical delimiters in (59)
and (60). We consider three strings

+1+1 − 1+1 − 1a3, − 1+1 − 1+1+1 − 1, and +1+1 − 1+1 − 1c3

(61)

in (59) and three strings

+1+1 − 1+1+1 − 1, − 1+1 − 1+1 − 1a3, and − 1+1 − 1+1 − 1c3

(62)

in (60). Using (54), by direct calculations we obtain that the energy of three
strings in (61) is equal to the energy of the three strings in (62).

The similar procedure gives Piece 4 of the canonical contour composed
by strings − 1 − 1+1. We obtain Piece 3 composed by string +1 − 1 auto-
matically. L

Applying the Lemma 11 to the configuration x1 we obtain a configu-
ration x̃1, having a monotone canonical contour and such that the energy
of the original configuration x and of x̃1 differ by a fixed constant for
all N. The volume where x̃1 is defined is V−N, N2

−N, N1
with N1, N2 \ N. The slope

of Cg
x̃1

is s̃1=s1 (see (51)).
We introduce notations used in the next section. Let tI=−N − 3

2 and
let tII ¥ Zg be the point where Piece 1 and Piece 2 of Cg

x̃1
join. If Piece 1 is

empty then tII=−N − 1
2 . The point tIII is the join point of Piece 2 and

Piece 3. If Piece 2 is empty then tII=tIII. The point tIV is the join point of
Piece 3 and Piece 4. If Piece 3 is empty then tIII=tIV. Let tV=N1+1

2 .

5.3. Rebuilding 3

In the previous steps we changed the contour Cg
x such that in the new

now canonical contour Cg
x̃1

output bond is on a level which is less than
− sN.

Lemma 12. Let Cg(1) be a canonical contour in a volume
V=V−M1, M2

−K1, K2
M1, M2, K1, K2 ¥ Z defined by a monotone decreasing split-

ting function g1. Let b in(1)=Ot in
1 (1), t in

2 (1)P and bout(1)=Otout
1 (1), tout

2 (1)P
be input and output bonds of Cg(1), and s(1)=

tout
2 (1) − t in

2 (1)

t in
1 (1) − tout

1 (1)
.

Then for any s : 0 < s [ s(1) there exists a canonical contour Cg(2)
(may be not monotone) such that
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1. b in(1)=b in(2), tout
1 (1)=tout

1 (2), tout
2 (1) \ tout

2 (2) and s(2)=
tout
2 (2) −tin

2 (2)

tin
1 (2) −tout

1 (2)
,

where b in(2)=Ot in
1 (2), t in

2 (2)P and bout(2)=Otout
1 (2), tout

2 (2)P are input and
output bonds of Cg(2).

2. If y1 and y2 are configurations on V having Cg(1) and Cg(2) as
contours then

H(y1) [ H(y2)+O(1) (63)

Proof. We use the notion of pieces of Cg(1) as it was considered in
Lemma 11 and in its proof (see also the end of Section 6.2).

The lemma conditions give tout
1 (1)=tout

2 (2)=K2+1
2 and tout

2 (1)=
K2+3

2 . Let b0=O(K2 − 1
2 , t0), (K2+1

2 , t0)P ¥ Cg(1) be a bond intersecting
the column LK2

={(K2, k) : k ¥ [ − K1, K2] ¥ Z. If Piece 5 of Cg(1) is not
empty then b0 is the last bond of Piece l, where l is the maximal number of
existing Pieces not greater than 4 (see the proof of Lemma 11). In this case
t0 > tout

2 +2. We assume that the splitting function g1 on [K2, K2+1] in the
considered case is:

g1(t)=−(t0 − tout
2 )(t − K2)+t0. (64)

We apply an algorithm to modify Cg(1) such that the resulting contour
Cg(2) has the same or less energy and s(2)=s. The algorithm is such that
we change slopes of some parts of Cg(1). First we change the direction of
angle of a part of Piece 2. Namely, we take the slope of this changed part
equal to +1

2 instead of − 1
2 that it had. Doing so we take s ¥ [tII, tIII] … Zg,

and a new contour Cg
s is defined by the following function gs

gs(t)=g(t) for all t [ tII,

dgs

dt
(u)=˛1

2
if u ¥ [tII, s],

dg
dt

(u), if u > s.

A new slope sC
g
s

is less than sC*(1).
Remark that the energy of the configurations y1 and a new configura-

tion ys having Cg
s as splitting contour differed by a constant independent

on `V. The difference arises because of perturbations on the ends of
[tout

2 , t in
2 ]=[tII, s].

If sC
g
s
=s for some s ¥ [tII, tIII] then we obtain the canonical contour

Cg
s which we looked for. Assume next that for s=tIII we have sC

g
s

> s.
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Then we reconstruct Piece 3 having slope − 1. Let s ¥ [tIII, tIV]. Now a new
contour Cg

s is defined by a splitting function gs such that

gs(t)=g(t) for all t [ tII,

dgs

dt
(u)=˛1

2
, if u ¥ [tII, tIII],

1, if u ¥ [tIII, s],
dg
dt

(u), if u > s.

If for some s we obtain sC
g
s
=s then Cg

s is the canonical contour we look
for. If for s=tIV we have sC

g
s

> s then we have to continue similar recon-
struction by applying it to Piece 4. Now, however, obtained contours are
not canonical. Let s ¥ [tIV, tV] then sC

g
s

is corresponding to the splitting
function

gs(t)=g(t) for all t [ tII, (65)

d
dt

gs(u)=˛+
1
2

, if u ¥ [tII, tIII],

+1, if u ¥ [tIII, tIV],
+2, if u ¥ [tIV, s]
d
dt

g(u), otherwise

(66)

The reconstruction changes the energy for a constant independent on `V.
Let sC

g
s
=s for some s ¥ [tIV, tV]. The contour Cg

s is not canonical since
there is a piece of the contour on the interval [tIV, s] having its slope equal
to +2. To obtain a canonical contour we change gs. Let h(u)=
1
2 (u − tIV)+gs(tIV) for u \ tIV, then a new splitting function g̃s is

g̃s(u)=˛gs(u), if u [ tIV,

min{h(u), gs(u)}, if u > tIV.

Let ỹ be the configuration on V defined by g̃s and C̃g be the corresponding
dual splitting contour. We show that H(ỹ) [ H(ygs

)+O(1), where ygs
is the

configuration defined by gs. Recall that the order of values of H(ỹ) and
H(ygs

) is N. We have to consider two cases. It is clear that there is a solu-
tion u0 of the equation h(u)=gs(u) on the interval (tIV, tV+1

2], recall that
tV=K2+1

2 .
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The first case is d
dt gs(u0)=−2. It means that the line h(u) intersects

Piece 4. Then u0=8
5 s − 3

5 tIV, and the main term of H(ygs
) − H(ỹ) is

16
5 (s − tIV) E1/2 > 0.

The new contour C̃g can be reconstructed to a canonical one.
The second case is d

dt g(u0) < − 2. It means that the line h(u) intersects
Piece 5. Then the main term of H(ygs

) − H(ỹ) is greater than or equal to

(tV − tIV) E1/2 > 0.

Next assume that sC
g
s

> s for any s > tIV. Then we use Piece 5 to
obtain the needed angle of the slope. We can use the previous considera-
tions to obtain the function gs with s=tV (see (65)). After we can obtain
the function g̃s as in the previous considerations which give the configura-
tion ỹ with a contour C̃g. This contour can be altered to a canonical one.
To obtain the needed slope s we change the output bond. Namely, we take
b̃out=(t̃out

1 , t̃out
2 ) such that õut2 − t in

2 =s(t in
1 − t̃out

1 ). We obtain a new con-
tour Cg(2) which is canonical and sC − (2)=s. Let y2 be the configuration
corresponding to Cg(2). L

Taking y1=x̃1 in V=V−N1, N
−N, N2

(see the end of Section 6.2) we obtain as
y2 a configuration x̂ in the same volume with a slope ŝ [ s1 and such that
H(x̂1) [ H(x̃)+O(1). We choose ŝ= 2sN

N+N2+2 . Obviously, the configuration
x̂ can be considered in the volume V−N, N

−N, N2
.

Next we show that there exists a configuration x0 on V=V−N, N
−N, N

having a canonical splitting contour such that its energy is less than the
energy of x̂ and hence of x.

The contour of x is in the volume V−N1, N
−N, N2

then the tilted boundary
conditions around V−N1, N

−N, N2
is defined by the function

x s̃(t)=˛1, if s̃t1+t2 \ 0,
0, otherwise,

where s̃=sN+N1
N+N2

.
First we find a configuration x̃0 having the minimal energy in

ZV − N, N
−N, N2

(s̃). The splitting contour of x̃0 has a shape which is found by
Lemma 4. Now let x0 be the configuration in V=V−N, N

−N, N having minimal
energy in ZV(s). We shall show that

H(x0) [ H(x̃0) (67)
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Remark that ŝ [ s therefore (67) is obvious for the case s [ 1
2 . It is also not

difficult to understand this fact for the case 1
2 [ ŝ. Assume next that

ŝ [ 1
2 [ s. Then the inequality (67) is easy to obtain in the regions A15, A17

A45 because the shape type of the splitting functions for x0 and x̃0 are the
same. In the region [A23 5 A36] 2 [A13 5 A36] 2 [A23 5 A35] 2 [A13 5 A35]
the shapes of the splitting contours have different types for x0 and x̃0.

In the region A23 5 A36 the splitting function g̃ of x̃0 is

g̃(−N)=sN,
d
dt

g̃(s)=˛ 1
2 if s ¥ ( − N, 1

2 (N2 − N) − 2sN),
− 1

2 if s ¥ (1
2 (N2 − N) − 2sN, N2),

(68)

and the splitting function g of x0 is like it is given by (35). Therefore

H(x̃0)=(N+N2) E1/2+O(1), (69)

and

H(x0)=4
3 N(1+s) E1/2+O(1). (70)

Since s \ 1
2 we obtain 4s \ 4

3 (1+s). Besides, ŝ [ 1
2 implies that 2sN

N2+N=
2s

1+
N2
N

[ 1
2 or equivalently

4s [ 1+
N2

N
. (71)

The last inequality gives (67) for large enough N.
In the region A13 5 A36

g̃(−N)=sN,
d
dt

g̃(s)=30 if s ¥ (−N, N2 − 4sN),
− 1

2 if s ¥ (N2 − 4sN, N2).
(72)

The configuration x0 in the considered region is the same as in A23 5 A36

(see (35)). The energy of x̃0 is

H(x̃0)=(N2+N − 4sN) E0+4sE1/2+O(1). (73)

Using (71) we obtain N2+N − 4sN \ 0 hence

H(x̃0) \ 4sNE1/2+O(1). (74)

Then (67) holds in A13 5 A36.
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In the region A23 5 A35 the configuration x̃0 is defined by (68) and x0 is
defined by the splitting function g

g(−N)=sN,
d
dt

g(s)=3 − 1
2 if s ¥ (−N, 3N − 4sN),

− 1 if s ¥ (3N − 4sN, N).
(75)

The energy H(x̃0) is given in (69) and

H(x0)=4(1 − s) NE1/2+2(2s − 1) NE1+O(1), (76)

(see (36)). We use the inequality E1 [ 4
3 E1/2 which holds in A35. Then

4(1 − s) E1/2+2(2s − 1) E1 [
4
3

(1+s) E1/2 [ 4sE1/2 [ 11+
N2

N
2 E1/2. (77)

It gives (67) for large N.
In the region A12 5 A35 the configurations x̃0 and x0 are defined by

(72) and (75) accordingly, and the energies of x̃0 and x0 are as in (73) and
(76). We use (74) and the left inequality in (77) obtaining (67) in this
region. L
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